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Abstract. Quasinormal mode®(ims) inside a leaky cavity are characterized by eigenfunctions

that are purely outgoing at infinity, and by eigenvalues that are discrete and complex. Apart
from a few special cases that admit analytic solutions, the determination of the complex
eigenfrequency2 and the associated eigenfunctidrx) of QNwms is, in general, more difficult

than the corresponding case of stationary states, and the various methods have their respective
strengths and weaknesses. In this paper, a suitable complete basis set, respecting the outgoing
wave condition, is introduced to represent the quasinormal modes in a given system, and a
matrix equation is then obtained. It is shown that truncation of this matrix system leads to an
efficient and accurate method for solving the eigenvalues and eigenvectormof

1. Introduction

Quasinormal mode{Ms) or resonances are often important in atomic and nuclear physics
(Schibdinger’s equation) [1], optics (the wave equation with a position-dependent dielectric
constant) [2-7], and even gravity [8] (linearized waves on a non-trivial background,
described by a Klein—Gordon equation, for example). They may be revealed as peaks in
the scattering cross section, or as long-lived states in decay processes [1]. Mathematically,
they are time-independent solutions of the respective equations describing open systems
and characterized by (i) the outgoing wave boundary condition at infinity, and (i) a
complex frequency2 with ImQ < 0. As a consequence, wavefunctions@ims blow

up exponentially at infinity, and cannot be normalized in the usual sense. Owing to
these special featuregNMs are not amenable to the conventional manipulations developed
for conservative (Hermitian) systems. For example, completeness, orthogonality and
perturbation series are usually established for square-integrable functions; it is not obvious
that these relations would hold famNmMms.

Thus, apart from a few special cases that admit analytic solutions, the determination
of the complex eigenvalu® and the associated eigenfunctidr(x) is, in general, more
difficult than the corresponding case of stationary states, and various methods all have their
respective strengths and weaknesses.

For quantum systems with potentialgx) that can be analytically continued in a
rotation in thex-plane can convert thenm problem into a stationary state problem (but
with a complex potential); the usual techniques can then be applied [9]. However, this
method is of limited utility for generaV (x). In optics, the dielectric constant distribution
€(x) plays a role similar td/ (x), and there are often discontinuities representing interfaces,
thus preventing analytic continuations.
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QNM problems can also be turned into bound-state problems by enclosing the system in
a box of sizeA > a = characteristic length of the potential, and either by examining the
density of states for larga [10, 11], or by requiring the stability of the eigenvalues with
respect to changes in [12]. This method works well in some cases, but is not likely to
be effective for broad or overlapping resonances. MoreoverQihgs of the original open
system are expected to be spaced in wavenumbeiy 7 /a, whereas the eigenvalues of
the system in the box ar&k ~ 7/A. With A > a, the computational effort is increased,
and the method could be cumbersome.

Variational methods foQNMs are based on stationarity rather than minimality of an
integral, and, moreover, are difficult to improve in a systematic way [9]. Perturbation
methods starting from an approximate bound-state problem are necessarily restricted to
narrow resonances [13].

An obvious technique is to choose a trial value$gfand integrateb (x) numerically
to largex. Then Q is varied until the asymptotic solution satisfies the outgoing wave
boundary condition. It is necessary to vary both{Rand ImS, but much more seriously,
the boundary condition requires that there is no incoming wave. But siné2 410, the
incoming wave is asymptotically tremallterm, whose amplitude is intrinsically difficult to
extract from the numerical solution. In contrast, it is relatively easy to extract the amplitude
of thelarge, exponentially growing term from a numerical solution, and set it to zero in order
to find a stationary state. This difficulty becomes especially serious for broad resonances,
because the ratio of the large and small solutions is exponentjahife|.

A powerful method, useful in many situations, is to expand the required sol@tion
in some basige;(x)}:

D(x) =Y a;g;(x) 1.1
J

and to convert the eigenvalue problem into a matrix equation for the coefficigntépon
truncation, the problem is then readily solved by standard mathematical packages. This
method is not intrinsically restricted to narrow resonances, and, moreover, can give many
QNMs simultaneously (in principle, up t& QNMs for an N x N truncation of the matrix).

The central issue is the choice of a natural and optimal basid¢set)} for this
purpose. The problem is that, traditionally, the only known complete sets are associated
with Hermitian systems, whileQNnMs are intrinsically non-Hermitian For example, in
a half-line problem where € [0, c0), one can divide the domain into an interior part
0 < x < ¢ and an exterior part < x < oo. In the latter, one assumes that the potential
(or the dielectric constant distribution) is sufficiently simple (e.g. a constant) that there is
an explicit solution which provides a logarithmic derivative for connecting to the interior
solution. In the interior, consider, for example, a basis{getr)} defined by a differential
operator and satisfying the boundary conditigf$0) = 0, ¢;(c) = 0O; these conditions
define a Hermitian system and ensure #ga{x)} is complete for the space of all functions
f(x) satisfying the same boundary conditions, jf€0) = 0, f(c¢) = 0. But the point is that
the QNM eigenfunction® (x) doesnot satisfy these conditions; indeed, by its very nature,
a QNM does not satisfy the boundary conditions #ory Hermitian system. Thus the set
{¢;(x)} must be augmented by at least one other basis function in order to repdesgnt
in the manner of (1.1), for example, the extra function is needed to edsune# 0. The
resultant formalism is then slightly messy and unnatural. When the basis set is unnatural,
one also expects that the result obtained byvar N truncation will not converge rapidly
asN — oo.

The awkwardness in the formalism stems from the mismatch between the non-Hermitian
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(i.e. non-conservative) nature QfimMs and a Hermitian basis set. However, it has recently
been shown that thenwms {¢;(x)} of many open systemsS, are complete for describing
outgoing waves [14]; they would then provide convenient and natural basis sets for
expanding the eigenfunctio (x) of another open systeifi. The purpose of this paper is

to develop this formalism, and to demonstrate that it works extremely well. The method is
effective because it is natural to compare one open syStémmanother open systes); in
particular,S, can often be chosen with physical insight to be closé,tm which case one
may expect rapid convergence &s— oo.

We shall present the formalism in terms of the one-dimensional scalar wave equation,
which also describes propagation of electromagnetic waves with zero orbital angular
momentum in spherical systems [14,15]. Generalization to electromagnetic waves with
non-vanishing angular momenta in three-dimensional space will be reported elsewhere [16].

We are particularly interested iQNms of optical systems for the following reasons.
QNMs of some mesoscopic dielectric structures, e.g. microspheres, may possess very long
lifetimes, and provide strong optical feedback to various nonlinear optical processes [4—
6]. It is then possible to construct very tiny optical resonators with extremely Bigh
factors based on these mesoscopic dielectric systems, and, in turn, achieve the purpose
of miniaturization of optical components. In fact, suggestions have been made to build
microlasers on tiny dielectric spheres with radial modulation in refractive indices [17].
However, lifetimes ofQNMs are extremely sensitive to fine structures of a system, and
may deteriorate significantly upon minor changes in refractive index. For example, the
lifetimes of QNMs in a dielectric sphere (a droplet) were found to decrease substantially
by the presence of impurities (nanometre-sized latex spheres or bubbles) [18, 19]. The
lifetimes of QNMs in a fused silica microsphere were observed to be shortened owing to
microdusts and layers of contaminants on its surface [20]. In order to provide guidelines to
the fabrication of such optical microcavities, one has to understandcdnow are affected
by the details of the dielectric constant distribution; thus, systematic and efficient methods
that determine eigenfrequencies and eigenfunctiongNeds in various configurations are
called for. The diagonalization method outlined in the present paper is one of the attempts
in this direction.

The rest of this paper is organized as follows. Section 2 is a brief review of the
completeness and orthogonality QfiMs, and we shall make use of these properties to
formulate the diagonalization method in section 3. Numerical examples and a comparison
with results obtained from second-order perturbation [14] will be presented in section 4. A
brief discussion in section 5 will then conclude our paper.

2. Completeness and orthogonality

We shall be concerned with a systéhdefined by a one-dimensional wave equation,

3% 92
e — | P = 2.1
|5~ 2z @0 =0 1)
wheree(x) = n?(x), andn(x) is the refractive index distribution. It is often convenient to
think of ® as the transverse vibrations of a string with linear mass depsity = €(x)

and placed under unit tension. Such open string systems are well studied [10, 21], and their
analogy to optics is well known [7,22]. We shall deal with a half-line probleni(0),

with boundary conditiond(x = 0, t) = 0; this could describe the totally reflecting mirror

at one end of an optical cavity, or the origin in cases wherepresents the radial variable.
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Some realistic optical systems described by (2.1) include the following. The distribution
e(x) = 1+ Md&(x — a) describes a one-dimensional optical cavity enclosed by a thin
slab of high dielectric constant at = a, forming a partially transmitting mirror; this is
the classic model of a laser cavity [7,14,22]. Toawms in this case are the ‘modes’
of the laser. The step function distributiarix) = 1 + (ni — 1)6(a — x) describes a
dielectric rod, and if the differential operator in (2.1) is modified to include a centrifugal
barrier [-92/9x? — —8%/8x? 4+ (I + 1)/x?], then this system is the radial problem for
electromagnetic waves (in particulae modes) in a uniform dielectric sphere of radius
in the sector with angular momentuin The latter system exhibits well known resonances
in Mie scattering, and has been studied extensively in recent years in the context of laser
interaction with microdroplets [2—6].

For a generak(x), the QNnms are defined by

2
‘l@(x) = —Q%(x)P(x) (2.2)
0x2

with the boundary condition® (x = 0) = 0, and outgoing waves as— oco. Our purpose
is to develop a method of solving (2.2) by casting it into a matrix equation in a suitable
basis. Here we shall restrict our attention to systéms which € (x) approaches a constant
asx — oo faster than any exponential. (In practice, we shall only deal with systems for
whiche(x) =1 forx > c¢.)

For this purpose, we consider a comparison open systemwith a distributione, (x).
Its QNMs are defined by

82
529 = —efe, ()¢ (x) (2.3)

with the same boundary conditions. The comparison sysigis assumed to be exactly
solved, i.e.w; and¢;(x) are known. (We use lower case lettess ¢; for the comparison
systemsS,,, and upper case lette€®, ® for the original systens.)

Furthermore, the comparison systémhas to satisfy two conditions. (&,(x) contains
a step discontinuity at = ¢, and (i) ¢,(x) = €(x) for x > ¢. (In other wordsg,(x) also
approaches a constant as— oo faster than any exponential.) Under these conditions,
it has been shown [14] thdt; (x)} forms a complete set inside,[) for functions f (x)
satisfying f(0) = 0 and the outgoing wave condition at= c. This completeness theorem
permits a natural expansion in the manner of (1.1), and provides the starting point for the
matrix formalism.

In addition to completeness, we also need an orthogonality relation. It has been
shown [14], by the usual manipulations, that threms of (2.3) satisfy

(#iloj) = /Cdx¢i(x)fo(x)¢j(x)
=& (2.4)

where the contouC is shown in figure 1; it goes along the real axis from Obtowvhere

b > ¢, and then to—oco in the complex plane as shown. Sineggx) = 1 for x > c,
the solution on(c, oo) is analytic inx, and can be readily continued to complexthe
wavefunctions vanish at the upper limit alod (x — —o0), and this allows the usual
manipulations to be carried out. Note that the eigenfunctipiis) are complex, and the
inner product in (2.4) is definedithoutcomplex conjugation. The diagonal entries in (2.4)
define the normalization and phase convention.
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Figure 1. ContourC in the complexx plane for defining

the inner product ofnwms. It goes along the real axis from
0 to b, whereb > ¢, and then to-oo in the complex plane
x as shown.

With these tools, we are now in a position to cast the original systanto a matrix
problem using the basis functions §§. A non-trivial feature is that the expansion (1.1)
holds only for 0< x < ¢, but the inner product is defined by the integral (2.4) aléhg

3. Formalism

In the rest of this paper, we assume that both the actual systeml the comparison system
S, are trivial outsidex = ¢, i.e.

ex)=¢,(x)=1 X >c. (3.1)

This condition is sufficiently general (sineean be arbitrarily large) to cover most situations
of interest. In particular, in nearly all optical applications, the exterior is vacuum. (The
generalization to include the centrifugal barri¢f + 1)/x? for x > ¢ is somewhat tricky,
and will be reported elsewhere.) The difference between the two systems is due to

v(x) = €(x) — €,(x) (3.2)

which has support on [@). Start with (2.2), multiply byg; (x), and integrate from O to
—oo. (All such integrals will be along the contoudr; this will be understood everywhere
below.) One obtains

—00 2 —00
[ s e = [ aramenewm. (33)
0 dx 0

On the left-hand side, integrate by parts twice. The surface terms vanish. Then use (2.3)
for 8%¢; (x)/9x?, and obtain

wf/ ” dx ¢; (x)e, (X)) P (x) = sz ” dx ¢; (x)e(x)D(x) . (3.4)
0 0

Separate each integral into the part from @ t@and the part from to —oo; moreover, put
€(x) = €,(x) + v(x). Then

(@ — @) { /0 ¥ f _w} dr ¢ (0o () D (x) = 22 /0 " dv g () D) (3.5)

in which we have used the fact thatx) = 0 for x outside [Qc¢). In integrals involving
wavefunction fromx = 0 tox = ¢, we are entitled to use the expansion (1.1). For example,

(@f — Q%) [O dx¢,-<x)eo(x>c1>(x)=(w?—s22>2{ /0 dx¢,»<x)eo<x>¢,<x)}a,. (3.6)
J
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This can be simplified by applying the orthogonality relation

/0 dx ¢ (x)e, (x)9; (x) = fo dx ¢; (x)€,(x); (x) — / dx ¢; (x)€,(x)g; (x)
_s #i(0)g;(c)
=8+
(w; + a)j)

where we have made use of the explicit representatjon) = ¢, (c) g2 =9 outside [Q ¢),

wheree, (x) = 1.
Similarly, it is readily shown that

92/0 dxqs,»(x)v(xw(x):szzZ{fo dxqs,-(x)v(x)asj(x)}a,-
j

(3.7)

= QZZVUQJ' (38)
J

where the matrix elemerit;; is defined in an obvious way.
Finally, for the integral involvingp; (x) and ®(x) beyondx = ¢, whereQNms behave
as outgoing plane waves, it is trivial to show that

—00

@ = Q) | drgi(0)e(N)P(x) =i(wi — Di(0) Y _$j(©)a;.  (3.9)
i Jj

(&

Thus, equation (3.5) can be written as the matrix system

Z{SUQZ-I—QUQ-}-LU}aj =0 (3.10)
j
where
S A QL /AC)
Sij =6&ij+Vij + i(; F o) (3.11)
Qij = igi(0)¢;(c) (3.12)
NS P A QLGN B
Ly = o {a,, I +wj)} 011015 (©)
= —a)i28,'j + W; Wj Li (C)¢j (C) (313)

i(w + o))
Now S;;, Q;; and L;; are completely determined by the basis $¢f(x)}, their
eigenvalues;, and the potential (x); in other words they are known. Then equation (3.10)
defines an eigenvalue problem f@rand{a;}. This eigenvalue system has certain unusual

features, as follows.

(i) The matricesS;;, Q;; andL;; are symmetric but not Hermitian. It follows th& is
not necessarily real.

(i) The eigenvalue appears quadratically in the linear system (3.10).

(i) This linear system can be straightforwardly recast into the form

@i (c)p;j(c) } a4 =0

i(a),- +(,z)j) (314)

J
from which it is obvious that whem(x) = 0, the solutions ar& = w;, a; = §;;.
(iv) If the surface terms; (c)¢; (c) were neglected, equation (3.10) reduces to the usual
matrix equation for Hermitian (i.e. closed rather than open) systems.
It will be understood that (3.10) is to be truncated intoMinx N set, so that is an

N-vector, andS, Q, L are N x N matrices. The appearance @f makes it difficult to

> {(w? — Q)8 — Q7Vi; — (R — 0)(Q — w))
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utilize standard linear algebra packages. However, this problem is readily surmounted by
defining [23]

bj = Qaj (315)

from which one gets the/2 x 2N system

(23)(5)-2(5 -2)(5)

whereQ2 appears linearly, and standard routines become applicable.

Since Q ~ id/0dt, the doubling of the variables by (3.16) is equivalent to the usual
trick of converting a second-order differential equation into a pair of first-order equations
involving (@, V), wherew = 0®/d¢. In fact, in such open systems governed by the wave
equation, it is natural to consider the simultaneous expansig®,o¥) rather than just the
expansion ofb. This aspect is very interesting and will be discussed elsewhere [16].

In general, ifN QNMs ¢; (x) are kept in the basis of expansion, there will Bé @blutions
to the eigenvalue equation (3.14). However, not all of theSesBlutions converge to the
exactQNMs of the actual system§ as N — oo. One has to check whether the solutions
satisfy the outgoing wave boundary conditionxat ¢, namely,

[/ )/em)],_, = [¢w)/eW], _. =iQ. (3.17)

Solutions violating this condition will be rejected.
In the next section, we shall apply (3.14) to solve fmwvs of two different systems,
and study the accuracy and rate of convergence of the diagonalization method.

4. Numerical examples

In the examples shown below, we use the comparison system with

€, (x) = nZ(x)
=1+ ®n?—10(c—x) (4.1)

to define the basis set for expanding them ®(x) of an actual systens described by
a more complicated (x). To be specific, we take; = 1.5, ¢ = 1.0 in the following

discussion unless otherwise stated. Thev eigenvaluesy; and eigenfunction; (x) of

(2.3) are readily written down [14], namely,

1 oni+1
i=—|2j+Dmx —iln i =0,+1, £2,... 4.2
© = e [( j+ D nl_l} J (4.2)

2
900 = \/;Sin(nlex) 0<x<c
1
2 jiw; (x—c)
= Esm(nla)jc)e' ) c<x. (4.3)
1

Note that Imw; are constant and Reg are evenly spaced.

In the first example, we consider a systehwith €(x) = ¢,(x) + v(x), andv(x) is
zero except in the range < x < ¢, where it is equal to a constant non-vanishing value
v,. In other words, the systeifi is obtained by ‘coating’ a thin layer of higher dielectric

and
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Figure 2. Locations ofgnwmsin the complex frequency plane for the first example with= 4.10,

a = 0.9, andN = 100. Open circles (pluses) show the exact positions (the approximate positions
obtained from the diagonalization method) @fims. Only modes with R& > 0 are shown;
modes with R& < 0 can be readily obtained from the reflection symmetry about the imaginary
Q axis.

0

-2

4

-6 -

-8 A

'10 T T T )
0 10 20 30 40

M

Figure 3. The absolute error (log scale) in the real and imaginary part® wérsus the mode
numberM for the first example withy, = 4.10,a = 0.9, andN = 100. (i) Logarithm (base
10) of the absolute value of the error in ReversusM (full curve); and (ii) logarithm (base
10) of the absolute value of the error in fnversusM (broken curve).

constant onS,. As €(x) is piecewise constant, the wave equation is analytically solvable.
The resultant eigenvalue equation involves only elementary trigonometric functions and can
be solved numerically in a straightforward manner. The exact eigenv&laes denoted by

open circles in figure 2, which shows the distribution of the eigenfrequencies on the complex
plane. On the other hangNwm frequencies can also be obtained from the diagonalization
method described in this paper by truncating the matrix at aréize100 [24], and these are
denoted by pluses in figure 2. It is observed that the majority of eigenvalues found from the
matrix method agrees extremely well with the exact values. The ones near the ‘edge’ of the
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Figure 4. The error in the real and imaginary parts of the wavefunction ofthe= 1 QNm
versusx for the first example withy, = 4.10,a = 0.9, andN = 20. The full (broken) curve
shows the error in the real (imaginary) part of twev wavefunction, which is normalized so
that [, dx ()@ (x)? = 1.

truncation, wheréRe2| ~ the maximum ofRew; | kept in the basis of expansion, cannot be
reproduced accurately as expected for obvious reasons; apart from these the results are truly
impressive. Note that in this numerical example the perturbatjos 4.10, and it is even

larger than the unperturbed valué = 2.25. This clearly demonstrates the accuracy and
validity of the diagonalization method. Furthermore, the exact eigenv&lueisthe actual

system lie on a sinusoidal locus in the complex plane; this feature is faithfully reproduced
by the matrix method. In this casgm Q| is by no means small (up to.4), of the same

order of magnitude as the spacing in Réapproximately 2); thus these resonances overlap
considerably. The matrix method works well nevertheless.

Figure 3 shows the error in B& and Im versus the ordeM of the Qnm for the
truncation sizeN = 100. (The numbering i = +1, +2, ... starting from the smallest
|IReQ2|. Only M > 0 is shown; the other half is symmetric.) FOW| < 25, ReQ
and ImQ are accurate to the level 1 The errors in the eigenfrequencies increase
gradually with M. As M ~ 40, where it is near the ‘edge’ of truncatiof®, obtained
from the diagonalization method are accurate to the level.1&igure 4 shows the error
in the normalized wavefunction of the = 1 QNM obtained from the matrix method with
N = 20—a relatively small basis; both the real and imaginary parts of the wavefunction are
accurate to the 1@ level everywhere. Figure 5 shows the errorcirfor the M = 1 QNM,
versus the size of truncatiovi, demonstrating very rapid convergence. For this lowest state,
a 10x 10 truncation gives2 to the 10° level. The high accuracy and rapid convergence
comes from the fact that the comparison systgnis close to the actual systef+—which
is possible only because we us®&am basis.

In the second example, we takéx) = n(x)?, and

ni 0<x<a
n(x)=1{ 1+ (1 — D cod{[(x —a)/(c —a)]n/2) a<x<c (4.4)
1 c<x.

wheren(x) andn, (x) are, respectively, shown by the full and broken curves in figure 6. This
example is interesting sinegx) and its first-order derivative are continuous everywhere,
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-8

Figure 5. The error (absolute value in log scale) in the frequency ofMhe- 1 Qnwm, obtained
from the diagonalization method for the first example with= 4.10 anda = 0.9, is plotted
against the truncation siz€. The full and the broken curves, respectively, show the logarithm
(base 10) of the error (absolute value) in®and Ims2.

2.0
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008 T T : T T |
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X

Figure 6. The refractive index distribution for the second example=(0.7), is plotted against.
The full and the broken curves, respectively, show the refractive indices of the actual system
and the comparison systesy.

while ¢,(x) of the comparison system has a step discontinuity &tc. As a consequence,
the asymptotic behaviour of thenm frequencies of the two systems are expected to be
quite different [14]. This point is clearly demonstrated in figure 7, in whichgkes of S,

and S (found by numerically integrating the differential equation) are, respectively, denoted
by full and open circles. As remarked previously, the imaginary partsnefs frequencies

of comparison systen§, are constant. By contragim 2| of the actual systen§ increase
as|ReQ]| increases, and are several times greater than thoSg dbespite the qualitative
differences in theQNMs of these two system, the diagonalization method usihcas a
comparison system nicely reproduces threms of S. The results obtained by truncating
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ImQ

'
=
a

0 5 10 15 20
Re Q

Figure 7. Locations of thegnws for the second example in the compl&xplane. The exact
positions ofQnms are shown by open circles, whitevvs located by truncating the matrix at a
size N = 20 are denoted by pluses. In addition, thevs of the comparison system are shown
by full circles.

at a matrix sizeN = 20 are shown by the pluses in figure 7. The 18 eigenvalues (up to
|Re 2| < 20) shown agree extremely well with the exact values; there is poorer agreement
near the edge of the truncation, as expected.

From these two examples one can see that the diagonalization method is very powerful
and accurate. Its validity does not depend on whetliey is continuous or discontinuous.

In fact, e(x) can be quite different frona,(x), yet results of high accuracy are obtained.
Furthermore, the method also applies to systems with rather broad resonances.

One can compare the present method with the perturbative expansioqQNfas
developed recently [14]. Consider the first example mentioned above and apply the second-
order perturbation theory to evaluate thems by usingv, as the expansion parameter. The
error in eigenfrequency of th& = 1 QNM is plotted against, as shown in figure 8, where
results obtained from the diagonalization method and perturbation are denoted by pluses
and full circles, respectively. Although the second-order perturbation theory works quite
nicely if v, is small, its accuracy worsens ag grows large, as expected. In contrast, the
diagonalization method works extremely well for both the small and the laygegimes,
although the matrix is truncated at a relatively small size, nanvely 20. In this respect,
the diagonalization method is, in general, much more powerful than the perturbative method.

5. Discussions and conclusion

In this paper we have presented an accurate method—the diagonalization method—to
evaluate both the eigenfrequencies and wavefunctiorgNefs. This method has several
advantages over the perturbation method developed recently [14]. First, by choosing a
proper expansion basis and writing down the corresponding matrix equation, one can readily
obtain a set ofgNMs of the system under consideration. Second, the accuracy of the
diagonalization method is relatively insensitive to the choice of the comparison system, as
shown in figure 8. Moreover, one can always improve the accuracy by increasing the size
of the matrix as discussed in section 4. In comparison, the validity of perturbation theory
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Figure 8. A log—log plot (base 10) of the error (absolute value) inSRéfull curve) and

ImQ (broken curve) of the = 1 Qnm againsty, for the first example withu = 0.9 and

N = 20. Data obtained from the diagonalization method and the second-order perturbation
theory are denoted by pluses and full circles, respectively. While numerical computations have
been carried out for discrete values f (pluses and full circles), lines (full and broken) are
drawn to guide the eye.

relies on the existence of a model system which is on the one hand exactly solvable and,
on the other hand, close to the system under consideration. It is often difficult to build
an appropriate model system that captures all the details of the original system. Since the
asymptotic behaviour ofNms are, as shown in our previous example, extremely sensitive
to the fine structures of (x), it is not easy to obtain an accurate perturbative expansion
which is applicable over a wide frequency range. In this aspect, the diagonalization method
outperforms the second-order perturbation method.

The diagonalization method developed heredams is different from the conventional
scheme for bound states in that there is a surface term in the eigenvalue equation. It is this
surface term which correctly takes the outgoing wave boundary condition into account. Its
emergence in the present paper, in which one-dimensional problems are considered, does
not introduce much extra difficulty in solving the eigenvalue equation. However, in dealing
with three-dimensional problems, where one has to consider the effect of the centrifugal
barrier, the situation is somewhat different. The surface term will involve Hankel functions
of the eigenfrequency, which is still to be determined, and renders the numerical solution
of the eigenvalue equation non-trivial. Thus, generalization of the diagonalization method
to three-dimensional systems is highly non-trivial and will be reported elsewhere.
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