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Abstract. Quasinormal modes (QNMs) inside a leaky cavity are characterized by eigenfunctions
that are purely outgoing at infinity, and by eigenvalues that are discrete and complex. Apart
from a few special cases that admit analytic solutions, the determination of the complex
eigenfrequency� and the associated eigenfunction8(x) of QNMs is, in general, more difficult
than the corresponding case of stationary states, and the various methods have their respective
strengths and weaknesses. In this paper, a suitable complete basis set, respecting the outgoing
wave condition, is introduced to represent the quasinormal modes in a given system, and a
matrix equation is then obtained. It is shown that truncation of this matrix system leads to an
efficient and accurate method for solving the eigenvalues and eigenvectors ofQNMs.

1. Introduction

Quasinormal modes (QNMs) or resonances are often important in atomic and nuclear physics
(Schr̈odinger’s equation) [1], optics (the wave equation with a position-dependent dielectric
constant) [2–7], and even gravity [8] (linearized waves on a non-trivial background,
described by a Klein–Gordon equation, for example). They may be revealed as peaks in
the scattering cross section, or as long-lived states in decay processes [1]. Mathematically,
they are time-independent solutions of the respective equations describing open systems
and characterized by (i) the outgoing wave boundary condition at infinity, and (ii) a
complex frequency� with Im � < 0. As a consequence, wavefunctions ofQNMs blow
up exponentially at infinity, and cannot be normalized in the usual sense. Owing to
these special features,QNMs are not amenable to the conventional manipulations developed
for conservative (Hermitian) systems. For example, completeness, orthogonality and
perturbation series are usually established for square-integrable functions; it is not obvious
that these relations would hold forQNMs.

Thus, apart from a few special cases that admit analytic solutions, the determination
of the complex eigenvalue� and the associated eigenfunction8(x) is, in general, more
difficult than the corresponding case of stationary states, and various methods all have their
respective strengths and weaknesses.

For quantum systems with potentialsV (x) that can be analytically continued inx, a
rotation in thex-plane can convert theQNM problem into a stationary state problem (but
with a complex potential); the usual techniques can then be applied [9]. However, this
method is of limited utility for generalV (x). In optics, the dielectric constant distribution
ε(x) plays a role similar toV (x), and there are often discontinuities representing interfaces,
thus preventing analytic continuations.
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QNM problems can also be turned into bound-state problems by enclosing the system in
a box of size3 � a = characteristic length of the potential, and either by examining the
density of states for large3 [10, 11], or by requiring the stability of the eigenvalues with
respect to changes in3 [12]. This method works well in some cases, but is not likely to
be effective for broad or overlapping resonances. Moreover, theQNMs of the original open
system are expected to be spaced in wavenumber by1k ∼ π/a, whereas the eigenvalues of
the system in the box are1k ∼ π/3. With 3 � a, the computational effort is increased,
and the method could be cumbersome.

Variational methods forQNMs are based on stationarity rather than minimality of an
integral, and, moreover, are difficult to improve in a systematic way [9]. Perturbation
methods starting from an approximate bound-state problem are necessarily restricted to
narrow resonances [13].

An obvious technique is to choose a trial value of�, and integrate8(x) numerically
to large x. Then � is varied until the asymptotic solution satisfies the outgoing wave
boundary condition. It is necessary to vary both Re� and Im�, but much more seriously,
the boundary condition requires that there is no incoming wave. But since Im� < 0, the
incoming wave is asymptotically thesmall term, whose amplitude is intrinsically difficult to
extract from the numerical solution. In contrast, it is relatively easy to extract the amplitude
of the large, exponentially growing term from a numerical solution, and set it to zero in order
to find a stationary state. This difficulty becomes especially serious for broad resonances,
because the ratio of the large and small solutions is exponential in|Im �|.

A powerful method, useful in many situations, is to expand the required solution8(x)

in some basis{φj (x)}:
8(x) =

∑
j

ajφj (x) (1.1)

and to convert the eigenvalue problem into a matrix equation for the coefficientsaj . Upon
truncation, the problem is then readily solved by standard mathematical packages. This
method is not intrinsically restricted to narrow resonances, and, moreover, can give many
QNMs simultaneously (in principle, up toN QNMs for an N × N truncation of the matrix).

The central issue is the choice of a natural and optimal basis set{φj (x)} for this
purpose. The problem is that, traditionally, the only known complete sets are associated
with Hermitian systems, whileQNMs are intrinsically non-Hermitian. For example, in
a half-line problem wherex ∈ [0, ∞), one can divide the domain into an interior part
0 6 x < c and an exterior partc < x < ∞. In the latter, one assumes that the potential
(or the dielectric constant distribution) is sufficiently simple (e.g. a constant) that there is
an explicit solution which provides a logarithmic derivative for connecting to the interior
solution. In the interior, consider, for example, a basis set{φj (x)} defined by a differential
operator and satisfying the boundary conditionsφj (0) = 0, φj (c) = 0; these conditions
define a Hermitian system and ensure that{φj (x)} is complete for the space of all functions
f (x) satisfying the same boundary conditions, i.e.f (0) = 0, f (c) = 0. But the point is that
the QNM eigenfunction8(x) doesnot satisfy these conditions; indeed, by its very nature,
a QNM does not satisfy the boundary conditions forany Hermitian system. Thus the set
{φj (x)} must be augmented by at least one other basis function in order to represent8(x)

in the manner of (1.1), for example, the extra function is needed to ensure8(c) 6= 0. The
resultant formalism is then slightly messy and unnatural. When the basis set is unnatural,
one also expects that the result obtained by anN × N truncation will not converge rapidly
asN → ∞.

The awkwardness in the formalism stems from the mismatch between the non-Hermitian
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(i.e. non-conservative) nature ofQNMs and a Hermitian basis set. However, it has recently
been shown that theQNMs {φj (x)} of many open systemsSo are complete for describing
outgoing waves [14]; they would then provide convenient and natural basis sets for
expanding the eigenfunction8(x) of another open systemS. The purpose of this paper is
to develop this formalism, and to demonstrate that it works extremely well. The method is
effective because it is natural to compare one open systemS to another open systemSo; in
particular,So can often be chosen with physical insight to be close toS, in which case one
may expect rapid convergence asN → ∞.

We shall present the formalism in terms of the one-dimensional scalar wave equation,
which also describes propagation of electromagnetic waves with zero orbital angular
momentum in spherical systems [14, 15]. Generalization to electromagnetic waves with
non-vanishing angular momenta in three-dimensional space will be reported elsewhere [16].

We are particularly interested inQNMs of optical systems for the following reasons.
QNMs of some mesoscopic dielectric structures, e.g. microspheres, may possess very long
lifetimes, and provide strong optical feedback to various nonlinear optical processes [4–
6]. It is then possible to construct very tiny optical resonators with extremely highQ-
factors based on these mesoscopic dielectric systems, and, in turn, achieve the purpose
of miniaturization of optical components. In fact, suggestions have been made to build
microlasers on tiny dielectric spheres with radial modulation in refractive indices [17].
However, lifetimes ofQNMs are extremely sensitive to fine structures of a system, and
may deteriorate significantly upon minor changes in refractive index. For example, the
lifetimes of QNMs in a dielectric sphere (a droplet) were found to decrease substantially
by the presence of impurities (nanometre-sized latex spheres or bubbles) [18, 19]. The
lifetimes of QNMs in a fused silica microsphere were observed to be shortened owing to
microdusts and layers of contaminants on its surface [20]. In order to provide guidelines to
the fabrication of such optical microcavities, one has to understand howQNMs are affected
by the details of the dielectric constant distribution; thus, systematic and efficient methods
that determine eigenfrequencies and eigenfunctions ofQNMs in various configurations are
called for. The diagonalization method outlined in the present paper is one of the attempts
in this direction.

The rest of this paper is organized as follows. Section 2 is a brief review of the
completeness and orthogonality ofQNMs, and we shall make use of these properties to
formulate the diagonalization method in section 3. Numerical examples and a comparison
with results obtained from second-order perturbation [14] will be presented in section 4. A
brief discussion in section 5 will then conclude our paper.

2. Completeness and orthogonality

We shall be concerned with a systemS defined by a one-dimensional wave equation,[
ε(x)

∂2

∂t2
− ∂2

∂x2

]
8(x, t) = 0 (2.1)

whereε(x) ≡ n2(x), andn(x) is the refractive index distribution. It is often convenient to
think of 8 as the transverse vibrations of a string with linear mass densityρ(x) = ε(x)

and placed under unit tension. Such open string systems are well studied [10, 21], and their
analogy to optics is well known [7, 22]. We shall deal with a half-line problem (x > 0),
with boundary condition8(x = 0, t) = 0; this could describe the totally reflecting mirror
at one end of an optical cavity, or the origin in cases wherex represents the radial variable.
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Some realistic optical systems described by (2.1) include the following. The distribution
ε(x) = 1 + Mδ(x − a) describes a one-dimensional optical cavity enclosed by a thin
slab of high dielectric constant atx = a, forming a partially transmitting mirror; this is
the classic model of a laser cavity [7, 14, 22]. TheQNMs in this case are the ‘modes’
of the laser. The step function distributionε(x) = 1 + (n2

1 − 1)θ(a − x) describes a
dielectric rod, and if the differential operator in (2.1) is modified to include a centrifugal
barrier [−∂2/∂x2 → −∂2/∂x2 + l(l + 1)/x2], then this system is the radial problem for
electromagnetic waves (in particularTE modes) in a uniform dielectric sphere of radiusa,
in the sector with angular momentuml. The latter system exhibits well known resonances
in Mie scattering, and has been studied extensively in recent years in the context of laser
interaction with microdroplets [2–6].

For a generalε(x), the QNMs are defined by

∂2

∂x2
8(x) = −�2ε(x)8(x) (2.2)

with the boundary conditions8(x = 0) = 0, and outgoing waves asx → ∞. Our purpose
is to develop a method of solving (2.2) by casting it into a matrix equation in a suitable
basis. Here we shall restrict our attention to systemsS in which ε(x) approaches a constant
as x → ∞ faster than any exponential. (In practice, we shall only deal with systems for
which ε(x) = 1 for x > c.)

For this purpose, we consider a comparison open systemSo, with a distributionεo(x).
Its QNMs are defined by

∂2

∂x2
φj (x) = −ω2

j εo(x)φj (x) (2.3)

with the same boundary conditions. The comparison systemSo is assumed to be exactly
solved, i.e.ωj andφj (x) are known. (We use lower case lettersωj , φj for the comparison
systemSo, and upper case letters�, 8 for the original systemS.)

Furthermore, the comparison systemSo has to satisfy two conditions. (i)εo(x) contains
a step discontinuity atx = c, and (ii) εo(x) = ε(x) for x > c. (In other words,εo(x) also
approaches a constant asx → ∞ faster than any exponential.) Under these conditions,
it has been shown [14] that{φj (x)} forms a complete set inside [0, c) for functionsf (x)

satisfyingf (0) = 0 and the outgoing wave condition atx = c. This completeness theorem
permits a natural expansion in the manner of (1.1), and provides the starting point for the
matrix formalism.

In addition to completeness, we also need an orthogonality relation. It has been
shown [14], by the usual manipulations, that theQNMs of (2.3) satisfy

〈〈φi |φj 〉〉 ≡
∫

C

dx φi(x)εo(x)φj (x)

= δij (2.4)

where the contourC is shown in figure 1; it goes along the real axis from 0 tob, where
b > c, and then to−∞ in the complex plane as shown. Sinceεo(x) = 1 for x > c,
the solution on(c, ∞) is analytic inx, and can be readily continued to complexx; the
wavefunctions vanish at the upper limit alongC (x → −∞), and this allows the usual
manipulations to be carried out. Note that the eigenfunctionsφj (x) are complex, and the
inner product in (2.4) is definedwithout complex conjugation. The diagonal entries in (2.4)
define the normalization and phase convention.



Determination of quasinormal modes in leaky cavities 147

Figure 1. ContourC in the complexx plane for defining
the inner product ofQNMs. It goes along the real axis from
0 to b, whereb > c, and then to−∞ in the complex plane
x as shown.

With these tools, we are now in a position to cast the original systemS into a matrix
problem using the basis functions ofSo. A non-trivial feature is that the expansion (1.1)
holds only for 06 x < c, but the inner product is defined by the integral (2.4) alongC.

3. Formalism

In the rest of this paper, we assume that both the actual systemS and the comparison system
So are trivial outsidex = c, i.e.

ε(x) = εo(x) = 1 x > c . (3.1)

This condition is sufficiently general (sincec can be arbitrarily large) to cover most situations
of interest. In particular, in nearly all optical applications, the exterior is vacuum. (The
generalization to include the centrifugal barrierl(l + 1)/x2 for x > c is somewhat tricky,
and will be reported elsewhere.) The difference between the two systems is due to

v(x) = ε(x) − εo(x) (3.2)

which has support on [0, c). Start with (2.2), multiply byφi(x), and integrate from 0 to
−∞. (All such integrals will be along the contourC; this will be understood everywhere
below.) One obtains∫ −∞

0
dx φi(x)

∂2

∂x2
8(x) = −�2

∫ −∞

0
dx φi(x)ε(x)8(x) . (3.3)

On the left-hand side, integrate by parts twice. The surface terms vanish. Then use (2.3)
for ∂2φi(x)/∂x2, and obtain

ω2
i

∫ −∞

0
dx φi(x)εo(x)8(x) = �2

∫ −∞

0
dx φi(x)ε(x)8(x) . (3.4)

Separate each integral into the part from 0 toc, and the part fromc to −∞; moreover, put
ε(x) = εo(x) + v(x). Then

(ω2
i − �2)

{∫ c

0
+

∫ −∞

c

}
dx φi(x)εo(x)8(x) = �2

∫ c

0
dx φi(x)v(x)8(x) (3.5)

in which we have used the fact thatv(x) = 0 for x outside [0, c). In integrals involving
wavefunction fromx = 0 to x = c, we are entitled to use the expansion (1.1). For example,

(ω2
i − �2)

∫ c

0
dx φi(x)εo(x)8(x) = (ω2

i − �2)
∑

j

{∫ c

0
dx φi(x)εo(x)φj (x)

}
aj . (3.6)
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This can be simplified by applying the orthogonality relation∫ c

0
dx φi(x)εo(x)φj (x) =

∫ −∞

0
dx φi(x)εo(x)φj (x) −

∫ −∞

c

dx φi(x)εo(x)φj (x)

= δij + φi(c)φj (c)

i(ωi + ωj)
(3.7)

where we have made use of the explicit representationφj (x) = φj (c) eiωj (x−c) outside [0, c),
whereεo(x) = 1.

Similarly, it is readily shown that

�2
∫ c

0
dx φi(x)v(x)8(x) = �2

∑
j

{∫ c

0
dx φi(x)v(x)φj (x)

}
aj

= �2
∑

j

Vij aj (3.8)

where the matrix elementVij is defined in an obvious way.
Finally, for the integral involvingφi(x) and8(x) beyondx = c, whereQNMs behave

as outgoing plane waves, it is trivial to show that

(ω2
i − �2)

∫ −∞

c

dx φi(x)εo(x)8(x) = i(ωi − �)φi(c)
∑

j

φj (c)aj . (3.9)

Thus, equation (3.5) can be written as the matrix system∑
j

{
Sij�

2 + Qij� + Lij

}
aj = 0 (3.10)

where

Sij = δij + Vij + φi(c)φj (c)

i(ωi + ωj)
(3.11)

Qij = iφi(c)φj (c) (3.12)

Lij = −ω2
i

{
δij + φi(c)φj (c)

i(ωi + ωj)

}
− iωiφi(c)φj (c)

= −ω2
i δij + ωiωj

φi(c)φj (c)

i(ωi + ωj)
. (3.13)

Now Sij , Qij and Lij are completely determined by the basis set{φj (x)}, their
eigenvaluesωj , and the potentialv(x); in other words they are known. Then equation (3.10)
defines an eigenvalue problem for� and{aj }. This eigenvalue system has certain unusual
features, as follows.

(i) The matricesSij , Qij andLij are symmetric but not Hermitian. It follows that� is
not necessarily real.

(ii) The eigenvalue� appears quadratically in the linear system (3.10).
(ii) This linear system can be straightforwardly recast into the form∑

j

{
(ω2

i − �2)δij − �2Vij − (� − ωi)(� − ωj)
φi(c)φj (c)

i(ωi + ωj)

}
aj = 0 (3.14)

from which it is obvious that whenv(x) = 0, the solutions are� = ωi , aj = δij .
(iv) If the surface termsφi(c)φj (c) were neglected, equation (3.10) reduces to the usual

matrix equation for Hermitian (i.e. closed rather than open) systems.
It will be understood that (3.10) is to be truncated into anN × N set, so thata is an

N -vector, andS, Q, L are N × N matrices. The appearance of�2 makes it difficult to
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utilize standard linear algebra packages. However, this problem is readily surmounted by
defining [23]

bj = �aj (3.15)

from which one gets the 2N × 2N system

(
0 1
L Q

) (
a
b

)
= �

(
1 0
0 −S

) (
a
b

)
(3.16)

where� appears linearly, and standard routines become applicable.
Since � ∼ i∂/∂t , the doubling of the variables by (3.16) is equivalent to the usual

trick of converting a second-order differential equation into a pair of first-order equations
involving (8, 9), where9 = ∂8/∂t . In fact, in such open systems governed by the wave
equation, it is natural to consider the simultaneous expansion of(8, 9) rather than just the
expansion of8. This aspect is very interesting and will be discussed elsewhere [16].

In general, ifN QNMs φj (x) are kept in the basis of expansion, there will be 2N solutions
to the eigenvalue equation (3.14). However, not all of these 2N solutions converge to the
exactQNMs of the actual systemsS as N → ∞. One has to check whether the solutions
satisfy the outgoing wave boundary condition atx = c, namely,[

8′(x)/8(x)
]
x=c− = [

8′(x)/8(x)
]
x=c+ = i� . (3.17)

Solutions violating this condition will be rejected.
In the next section, we shall apply (3.14) to solve forQNMs of two different systems,

and study the accuracy and rate of convergence of the diagonalization method.

4. Numerical examples

In the examples shown below, we use the comparison system with

εo(x) ≡ n2
o(x)

= 1 + (n2
1 − 1)θ(c − x) (4.1)

to define the basis set for expanding theQNM 8(x) of an actual systemS described by
a more complicatedε(x). To be specific, we taken1 = 1.5, c = 1.0 in the following
discussion unless otherwise stated. TheQNM eigenvaluesωj and eigenfunctionsφj (x) of
(2.3) are readily written down [14], namely,

ωj = 1

2n1c

[
(2j + 1)π − i ln

n1 + 1

n1 − 1

]
j = 0, ±1, ±2, . . . (4.2)

and

φj (x) =
√

2

n2
1c

sin(n1ωjx) 0 6 x 6 c

=
√

2

n2
1c

sin(n1ωjc) eiωj (x−c) c 6 x . (4.3)

Note that Imωj are constant and Reωj are evenly spaced.
In the first example, we consider a systemS with ε(x) = εo(x) + v(x), and v(x) is

zero except in the rangea < x < c, where it is equal to a constant non-vanishing value
vo. In other words, the systemS is obtained by ‘coating’ a thin layer of higher dielectric
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Figure 2. Locations ofQNMs in the complex frequency plane for the first example withvo = 4.10,
a = 0.9, andN = 100. Open circles (pluses) show the exact positions (the approximate positions
obtained from the diagonalization method) ofQNMs. Only modes with Re� > 0 are shown;
modes with Re� < 0 can be readily obtained from the reflection symmetry about the imaginary
� axis.

Figure 3. The absolute error (log scale) in the real and imaginary parts of� versus the mode
numberM for the first example withvo = 4.10, a = 0.9, andN = 100. (i) Logarithm (base
10) of the absolute value of the error in Re� versusM (full curve); and (ii) logarithm (base
10) of the absolute value of the error in Im� versusM (broken curve).

constant onSo. As ε(x) is piecewise constant, the wave equation is analytically solvable.
The resultant eigenvalue equation involves only elementary trigonometric functions and can
be solved numerically in a straightforward manner. The exact eigenvalues� are denoted by
open circles in figure 2, which shows the distribution of the eigenfrequencies on the complex
plane. On the other hand,QNM frequencies can also be obtained from the diagonalization
method described in this paper by truncating the matrix at a sizeN = 100 [24], and these are
denoted by pluses in figure 2. It is observed that the majority of eigenvalues found from the
matrix method agrees extremely well with the exact values. The ones near the ‘edge’ of the
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Figure 4. The error in the real and imaginary parts of the wavefunction of theM = 1 QNM

versusx for the first example withvo = 4.10, a = 0.9, andN = 20. The full (broken) curve
shows the error in the real (imaginary) part of theQNM wavefunction, which is normalized so
that

∫
C

dx ε(x)8(x)2 = 1.

truncation, where|Re�| ≈ the maximum of|Reωi | kept in the basis of expansion, cannot be
reproduced accurately as expected for obvious reasons; apart from these the results are truly
impressive. Note that in this numerical example the perturbationvo = 4.10, and it is even
larger than the unperturbed valuen2

1 = 2.25. This clearly demonstrates the accuracy and
validity of the diagonalization method. Furthermore, the exact eigenvalues� of the actual
system lie on a sinusoidal locus in the complex plane; this feature is faithfully reproduced
by the matrix method. In this case,|Im �| is by no means small (up to 0.4), of the same
order of magnitude as the spacing in Re� (approximately 2); thus these resonances overlap
considerably. The matrix method works well nevertheless.

Figure 3 shows the error in Re� and Im� versus the orderM of the QNM for the
truncation sizeN = 100. (The numbering isM = ±1, ±2, . . . starting from the smallest
|Re�|. Only M > 0 is shown; the other half is symmetric.) For|M| < 25, Re�
and Im� are accurate to the level 10−2. The errors in the eigenfrequencies increase
gradually with M. As M ≈ 40, where it is near the ‘edge’ of truncation,� obtained
from the diagonalization method are accurate to the level 10−1. Figure 4 shows the error
in the normalized wavefunction of theM = 1 QNM obtained from the matrix method with
N = 20—a relatively small basis; both the real and imaginary parts of the wavefunction are
accurate to the 10−4 level everywhere. Figure 5 shows the error in� for the M = 1 QNM,
versus the size of truncationN , demonstrating very rapid convergence. For this lowest state,
a 10× 10 truncation gives� to the 10−5 level. The high accuracy and rapid convergence
comes from the fact that the comparison systemSo is close to the actual systemS—which
is possible only because we use aQNM basis.

In the second example, we takeε(x) ≡ n(x)2, and

n(x) =


n1 0 6 x 6 a

1 + (n1 − 1) cos2 {[(x − a)/(c − a)]π/2} a 6 x 6 c

1 c 6 x .

(4.4)

wheren(x) andno(x) are, respectively, shown by the full and broken curves in figure 6. This
example is interesting sinceε(x) and its first-order derivative are continuous everywhere,
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Figure 5. The error (absolute value in log scale) in the frequency of theM = 1 QNM, obtained
from the diagonalization method for the first example withvo = 4.10 anda = 0.9, is plotted
against the truncation sizeN . The full and the broken curves, respectively, show the logarithm
(base 10) of the error (absolute value) in Re� and Im�.

Figure 6. The refractive index distribution for the second example (a = 0.7), is plotted againstx.
The full and the broken curves, respectively, show the refractive indices of the actual systemS

and the comparison systemSo.

while εo(x) of the comparison system has a step discontinuity atx = c. As a consequence,
the asymptotic behaviour of theQNM frequencies of the two systems are expected to be
quite different [14]. This point is clearly demonstrated in figure 7, in which theQNMs of So

andS (found by numerically integrating the differential equation) are, respectively, denoted
by full and open circles. As remarked previously, the imaginary parts ofQNMs frequencies
of comparison systemSo are constant. By contrast,|Im �| of the actual systemS increase
as |Re�| increases, and are several times greater than those ofSo. Despite the qualitative
differences in theQNMs of these two system, the diagonalization method usingSo as a
comparison system nicely reproduces theQNMs of S. The results obtained by truncating
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Figure 7. Locations of theQNMs for the second example in the complex� plane. The exact
positions ofQNMs are shown by open circles, whileQNMs located by truncating the matrix at a
sizeN = 20 are denoted by pluses. In addition, theQNMs of the comparison system are shown
by full circles.

at a matrix sizeN = 20 are shown by the pluses in figure 7. The 18 eigenvalues (up to
|Re �| < 20) shown agree extremely well with the exact values; there is poorer agreement
near the edge of the truncation, as expected.

From these two examples one can see that the diagonalization method is very powerful
and accurate. Its validity does not depend on whetherε(x) is continuous or discontinuous.
In fact, ε(x) can be quite different fromεo(x), yet results of high accuracy are obtained.
Furthermore, the method also applies to systems with rather broad resonances.

One can compare the present method with the perturbative expansion forQNMs

developed recently [14]. Consider the first example mentioned above and apply the second-
order perturbation theory to evaluate theQNMs by usingvo as the expansion parameter. The
error in eigenfrequency of theM = 1 QNM is plotted againstvo as shown in figure 8, where
results obtained from the diagonalization method and perturbation are denoted by pluses
and full circles, respectively. Although the second-order perturbation theory works quite
nicely if vo is small, its accuracy worsens asvo grows large, as expected. In contrast, the
diagonalization method works extremely well for both the small and the largevo regimes,
although the matrix is truncated at a relatively small size, namelyN = 20. In this respect,
the diagonalization method is, in general, much more powerful than the perturbative method.

5. Discussions and conclusion

In this paper we have presented an accurate method—the diagonalization method—to
evaluate both the eigenfrequencies and wavefunctions ofQNMs. This method has several
advantages over the perturbation method developed recently [14]. First, by choosing a
proper expansion basis and writing down the corresponding matrix equation, one can readily
obtain a set ofQNMs of the system under consideration. Second, the accuracy of the
diagonalization method is relatively insensitive to the choice of the comparison system, as
shown in figure 8. Moreover, one can always improve the accuracy by increasing the size
of the matrix as discussed in section 4. In comparison, the validity of perturbation theory
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Figure 8. A log–log plot (base 10) of the error (absolute value) in Re� (full curve) and
Im � (broken curve) of theM = 1 QNM againstvo for the first example witha = 0.9 and
N = 20. Data obtained from the diagonalization method and the second-order perturbation
theory are denoted by pluses and full circles, respectively. While numerical computations have
been carried out for discrete values ofvo (pluses and full circles), lines (full and broken) are
drawn to guide the eye.

relies on the existence of a model system which is on the one hand exactly solvable and,
on the other hand, close to the system under consideration. It is often difficult to build
an appropriate model system that captures all the details of the original system. Since the
asymptotic behaviour ofQNMs are, as shown in our previous example, extremely sensitive
to the fine structures ofε(x), it is not easy to obtain an accurate perturbative expansion
which is applicable over a wide frequency range. In this aspect, the diagonalization method
outperforms the second-order perturbation method.

The diagonalization method developed here forQNMs is different from the conventional
scheme for bound states in that there is a surface term in the eigenvalue equation. It is this
surface term which correctly takes the outgoing wave boundary condition into account. Its
emergence in the present paper, in which one-dimensional problems are considered, does
not introduce much extra difficulty in solving the eigenvalue equation. However, in dealing
with three-dimensional problems, where one has to consider the effect of the centrifugal
barrier, the situation is somewhat different. The surface term will involve Hankel functions
of the eigenfrequency, which is still to be determined, and renders the numerical solution
of the eigenvalue equation non-trivial. Thus, generalization of the diagonalization method
to three-dimensional systems is highly non-trivial and will be reported elsewhere.
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